Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.

نویسندگان

  • Andrea Michel
  • Abigail Koch-Koerfges
  • Karin Krumbach
  • Melanie Brocker
  • Michael Bott
چکیده

Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Fermentative Production of L-glutamic Acid by Corynebacterium Glutamicum in a Batch Bioreactor

The fermentation kinetics of L-glutamic acid by Corynebacterium glutamicum was studied in a batch bioreactor. Mathematical model using the logistic equation for growth, Leudeking-Piret kinetic equation for product formation and Leudeking-Piret like equation for substrate consumption was proposed. Based on the analysis of experimental data followed by computer simulation, the model seemed to pro...

متن کامل

Fermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources

Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...

متن کامل

Towards homosuccinate fermentation : metabolic engineering of 1 Corynebacterium glutamicum for anaerobic succinate production from

5 Boris Litsanov, Melanie Brocker, and Michael Bott 6 Institut für Biound Geowissenschaften, IBG-1: Biotechnologie, 7 Forschungszentrum Jülich, D-52425 Jülich, Germany 8 9 Running title: Anaerobic succinate production with Corynebacterium glutamicum 10 11 *Corresponding author: 12 Prof. Dr. Michael Bott 13 Institut für Biound Geowissenschaften 14 IBG-1: Biotechnologie 15 Forschungszentrum Jülic...

متن کامل

Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R.

In cellulosic ethanol production, pretreatment of a biomass to facilitate enzymatic hydrolysis inevitably yields fermentation inhibitors such as organic acids, furans, and phenols. With representative inhibitors included in the medium at various concentrations, individually or in various combinations, ethanol production by Corynebacterium glutamicum R under growth-arrested conditions was invest...

متن کامل

Reducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 21  شماره 

صفحات  -

تاریخ انتشار 2015